Select Cardiac Copper Chaperone Proteins Are up - Regulated by Dietary Copper Deficiency

نویسنده

  • Denis M. Medeiros
چکیده

Copper deficiency has been linked with many health problems, among them cardiac hypertrophy. Because of its potential for causing oxidative damage, copper within the cell must be bound to chaperone proteins. In this thesis, we examined the role of dietary copper deficiency in the regulation of select copper chaperone proteins in cardiac tissue of rats. Sixteen weanling male Long-Evans rats were randomized into treatment groups, one group receiving a copper deficient diet (< 1 mg Cu/kg diet) and one group receiving a diet containing adequate copper (6 mg Cu/kg diet) for 5 weeks. Rats were sacrificed and a small blood sample was removed to determine hematocrit. Also, heart and liver tissues were removed for subsequent analysis. Rats fed the copper deficient diet had lower body weights but greater heart weights and heart:body weight. Hematocrit levels and liver copper concentrations were markedly decreased in copper deficient rats. These variables indicated that the copper deficient diet did in fact induce a copper deficiency in these animals. Nonmyofibrillar proteins from the hearts were removed and separated by SDS-PAGE. Western Blotting was used to determine the concentrations of CTR1, CCS, Cox17, SCO1, Cox1 and Cox4. No changes were observed in the concentrations of CTR1 and Cox17. CCS and SCO1 were up-regulated as a result of copper deficiency, while Cox1 and Cox4 were both down-regulated. However, use of another antibody against Cox subunits suggested that only the nuclear encoded subunits including subunit IV were decreased, but not subunits I and II. These data provide new insight into the cardiac hypertrophy observed in copper deficiency, which suggests that select chaperone proteins may be up-regulated by a dietary copper deficiency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of dietary copper and breed on gene products involved in copper acquisition, distribution, and use in Angus and Simmental cows and fetuses.

Copper (Cu) deficiency is a widespread problem in cattle across the United States and breed differences in Cu metabolism may contribute to this issue. Intracellular Cu is tightly regulated by transport and chaperone proteins, and to date, these mechanisms have not been elucidated to address breed differences in Cu metabolism, nor have these proteins been characterized in bovine fetal liver. Mat...

متن کامل

Copper Deficiency Leads to Anemia, Duodenal Hypoxia, Upregulation of HIF-2α and Altered Expression of Iron Absorption Genes in Mice

Iron and copper are essential trace metals, actively absorbed from the proximal gut in a regulated fashion. Depletion of either metal can lead to anemia. In the gut, copper deficiency can affect iron absorption through modulating the activity of hephaestin - a multi-copper oxidase required for optimal iron export from enterocytes. How systemic copper status regulates iron absorption is unknown....

متن کامل

Impairment of Interrelated Iron- and Copper Homeostatic Mechanisms in Brain Contributes to the Pathogenesis of Neurodegenerative Disorders

Iron and copper are important co-factors for a number of enzymes in the brain, including enzymes involved in neurotransmitter synthesis and myelin formation. Both shortage and an excess of iron or copper will affect the brain. The transport of iron and copper into the brain from the circulation is strictly regulated, and concordantly protective barriers, i.e., the blood-brain barrier (BBB) and ...

متن کامل

Transcriptomic and physiological characterization of the fefe mutant of melon (Cucumis melo) reveals new aspects of iron-copper crosstalk.

Iron (Fe) and copper (Cu) homeostasis are tightly linked across biology. In previous work, Fe deficiency interacted with Cu-regulated genes and stimulated Cu accumulation. The C940-fe (fefe) Fe-uptake mutant of melon (Cucumis melo) was characterized, and the fefe mutant was used to test whether Cu deficiency could stimulate Fe uptake. Wild-type and fefe mutant transcriptomes were determined by ...

متن کامل

Cardiac cytochrome-c oxidase deficiency occurs during late postnatal development in progeny of copper-deficient rats.

Although cytochrome-c oxidase (CCO) is a copper-dependent enzyme, the effect of maternal copper deficiency on the expression of CCO activity during postnatal development of the neonatal rat heart has not been investigated extensively. Here, we show that CCO activity in heart mitochondria isolated from neonates of copper-deficient dams did not exhibit significant reductions until postnatal days ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009